Epileptic Seizures Prediction Using Machine Learning Methods

نویسندگان

  • Syed Muhammad Usman
  • Muhammad Usman
  • Simon Fong
چکیده

Epileptic seizures occur due to disorder in brain functionality which can affect patient's health. Prediction of epileptic seizures before the beginning of the onset is quite useful for preventing the seizure by medication. Machine learning techniques and computational methods are used for predicting epileptic seizures from Electroencephalograms (EEG) signals. However, preprocessing of EEG signals for noise removal and features extraction are two major issues that have an adverse effect on both anticipation time and true positive prediction rate. Therefore, we propose a model that provides reliable methods of both preprocessing and feature extraction. Our model predicts epileptic seizures' sufficient time before the onset of seizure starts and provides a better true positive rate. We have applied empirical mode decomposition (EMD) for preprocessing and have extracted time and frequency domain features for training a prediction model. The proposed model detects the start of the preictal state, which is the state that starts few minutes before the onset of the seizure, with a higher true positive rate compared to traditional methods, 92.23%, and maximum anticipation time of 33 minutes and average prediction time of 23.6 minutes on scalp EEG CHB-MIT dataset of 22 subjects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal preictal period in seizure prediction

A statistical method for finding the optimal preictal period to be used in epileptic seizure prediction algorithms is presented. As supervised machine learning methods need labeled training samples, the adequate selection of preictal period plays a key role in the training of an efficient classifier employed in seizure prediction. The proposed method uses amplitude distribution histograms of a ...

متن کامل

Comparison Machine Learning Algorithms for Recognition of Epileptic Seizures in EEG

The aim of this study is to diagnose epileptic seizures by using different machine learning algorithms. For this purpose, the frequency components of the EEG are extracted by using the discrete wavelet transform (DWT) and parametric methods based on autoregressive (AR) model. Both these two feature extraction methods are applied to the input of machine learning classification algorithms such as...

متن کامل

A Novel Dynamic Update Framework for Epileptic Seizure Prediction

Epileptic seizure prediction is a difficult problem in clinical applications, and it has the potential to significantly improve the patients' daily lives whose seizures cannot be controlled by either drugs or surgery. However, most current studies of epileptic seizure prediction focus on high sensitivity and low false-positive rate only and lack the flexibility for a variety of epileptic seizur...

متن کامل

Epileptic seizure predictors based on computational intelligence techniques: A comparative study with 278 patients

The ability of computational intelligence methods to predict epileptic seizures is evaluated in long-term EEG recordings of 278 patients suffering from pharmaco-resistant partial epilepsy, also known as refractory epilepsy. This extensive study in seizure prediction considers the 278 patients from the European Epilepsy Database, collected in three epilepsy centres: Hôpital Pitié-là-Salpêtrière,...

متن کامل

Prediction of Epileptic form Activity in Brain Electroencephalogram Waves using Support vector machine

Human brain is a highly complex structure composed of millions of nerve cells. Their activity is usually well organized with mechanisms for self-regulation. The neurons are responsible for a range of functions, including consciousness and bodily functions and postures. A sudden temporary interruption in some or all of these functions is called a seizure. Epilepsy is a brain disorder that causes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017